Skip to main content

Week 01

About 5 min

Week 01 관련


NEWTON'S LAW

F=ma; \sum{\vec{F}}=m\vec{a};

  • vector statement
  • sum of force statement
  • does not make distinction between
    • object at rest and
    • object moving at constant velocity.

V=0V=const \begin{matrix}V=0&\equiv&V=\text{const}\end{matrix}


FRAME OF REFERENCE

  • inertial frame

e.g.

S:xy-frame S: xy\text{-frame}

Q1: In the classroom, fixed to the surface of the earth, are we on an inertial frame?

A1: No. Because the earth is spinning.

Q2: Do we see something spinning, because the earth is spinning?

A2: No. (except coriolis effectopen in new window)

EXAMPLE

in general

×B1cEt=4πcjE=4πρ×E+1cBt=0B=0 \begin{align*} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{align*}

v=vV,{v1=v1+V;v2=v2V; \begin{align*} v'&=v-\mathbf{V},&& \begin{cases} v_1=v_1'+\mathbf{V}; \\ v_2=v_2'-\mathbf{V}; \end{cases} \end{align*}

CONSERVATION OF MOMENTUM

m1v1+m2v2=(m1+m2)vf;v=v+Vm1(v1+V)+m2(v2+V)=(m1+m2)(vf+V);m1v1+m2v2+(m1+m2)V=(m1+m2)(vf)+(m1+m2)V);m1v1+m2v2=(m1+m2)vf \begin{align*} m_1v_1+m_2v_2&=(m_1+m_2)v_f;&&\langle v=v'+\mathbf{V} \rangle\\ m_1(v_1'+\mathbf{V})+m_2(v_2'+\mathbf{V})&=(m_1+m_2)(v_f'+\mathbf{V});\\ m_1v_1'+m_2v_2'+(m_1+m_2)\mathbf{V}&=(m_1+m_2)(v_f')+(m_1+m_2)\mathbf{V});\\ m_1v_1'+m_2v_2'&=(m_1+m_2)v_f' \end{align*}

S:m1v1+m2v2=(m1+m2)vfconservation of momentum \underset{\text{conservation of momentum}}{\therefore{S'}: m_1v_1'+m_2v_2'=(m_1+m_2)v_f'}


GALILEAN TRANSFORMATION

DERIVATION

v=vV;dxdt=dxdtV;dt=dtdx=dxVdt;x=xVdt; \begin{align*} v'&=v-\mathbf{V};\\ \frac{dx'}{dt'}&=\frac{dx}{dt}-\mathbf{V};&&\langle dt'=dt \rangle\\ dx'&=dx-\mathbf{V}dt;\\ x'&=x-\mathbf{V}dt; \end{align*}

GENERAL FORM (for Newtonian Relativity)

{x=xVt;y=y;z=z;t=t; \begin{cases} x'=x-\mathbf{V}t;\\ y'=y;\\ z'=z;\\ t'=t;\\ \end{cases}


SPEED OF LIGHT

List of Important Equations

EdS=Qencϵ0,ϵ0=10936π8.85012permittivity of free space \begin{align*} \oint{\vec{E}\cdot{d}\vec{S}}&=\frac{Q_{\text{enc}}}{\epsilon_0},&&\langle \underset{\text{permittivity of free space}}{\epsilon_0=\frac{10^{-9}}{36\pi}\approx8.85 \rangle0^{-12}}\rangle \end{align*}

EdS=dΦBdt,ϕB=BdSmagnetic flux \begin{align*} \oint{\vec{E}\cdot{d}\vec{S}}&=-\frac{d\Phi_{B}}{dt},&&&&\langle \underset{\text{magnetic flux}}{\phi_B=\oint{\vec{B}\cdot{d}\vec{S}}} \rangle \end{align*}

BdS=μ0ithrough,B:magnetic flux densityμpermeability of free angle0=4π×107=12.6×107 \begin{align*} \oint{\vec{B}\cdot{d}\vec{S}} &= \mu_0i_{\text{through}}, &&\langle \begin{matrix}B:\text{magnetic flux density}\\ \underset{\text{permeability of free angle}} \mu_0=4\pi\times10^{-7}=12.6\times10^{-7} \end{matrix} \rangle \end{align*}

BdS=μ0[ithrough+ϵ0dΦEdt],where \begin{align*} \oint{\vec{B}\cdot{d}\vec{S}}&=\mu_0\left[i_{\text{through}}+\epsilon_0\frac{d\Phi_E}{dt}\right],&\text{where}\\ \end{align*}

ϕE=EdS=EdAcosθ=EA=[qϵ0A]A \rangle \begin{align*} \phi_E&=\oint{\vec{E}\cdot{d}\vec{S}} =\oint{E\:dA\:\cos{\theta}}\\&=E\:A=\left[\frac{q}{\epsilon_0A}\right]A \end{align*} \rangle

DERIVATION

EdS=E(x+Δx,t)h+0E(x,t)h+0;E(x+Δx)=E(x)+dEdxΔx=[E(x)+dEdxΔx]hE(x,t)h;=dEdxΔxh; \begin{align*} \oint{\vec{E}\cdot{d}\vec{S}} &=E(x+\Delta{x},t)h+0-E(x,t)h+0;&&\langle E(x+\Delta{x})=E(x)+\frac{dE}{dx}\Delta{x} \rangle\\ &=\left[E(x)+\frac{dE}{dx}\Delta{x}\right]h-E(x,t)h;\\ &=\underline{\frac{dE}{dx}\Delta{x}\:h;} \end{align*}

EdS=dΦBdt=ddt(BdA)=ddt(BAcosθ)=ddt(BΔxh)=dBdtΔxh; \begin{align*} \oint{\vec{E}\cdot{d}\vec{S}} &=-\frac{d\Phi_B}{dt}=-\frac{d}{dt}\left(\oint{\vec{B}\cdot{d}\vec{A}}\right)=-\frac{d}{dt}\left(B\:A\:\cos{\theta}\right)\\ &=-\frac{d}{dt}\left(B\:\Delta{x}\:h\right)=\underline{-\frac{dB}{dt}\Delta{x}\:h;}\\\\ \end{align*}

dEdxΔxh=dBdtΔxhdEdx=dBdt \begin{align*} \frac{dE}{dx}\Delta{x}\:h&=-\frac{dB}{dt}\Delta{x}\:h\\ \therefore\frac{dE}{dx}&=-\frac{dB}{dt} \end{align*}

BdS=B(x+Δx)h+0+B(x,t)h+0,B(x+Δx)=B(x)+dBdxΔx=[B(x,t)+dBdxΔx]h+B(x,t)h=dBdxΔxh; \begin{align*} \oint{\vec{B}\cdot{d}\vec{S}}&=-B(x+\Delta{x})h+0+B(x,t)h+0,&&\langle B(x+\Delta{x})=B(x)+\frac{dB}{dx}\Delta{x} \rangle\\ &=-\left[B(x,t)+\frac{dB}{dx}\Delta{x}\right]h+B(x,t)h\\ &=\underline{-\frac{dB}{dx}\Delta{x}\:h;} \end{align*}

BdS=μ0[ithrough+ϵ0dΦEdt],ithrough=0=ϵ0μ0dΦEdt=ϵ0μ0ddtEdS=ϵ0μ0dEdtΔxh; \begin{align*} \oint{\vec{B}\cdot{d}\vec{S}}&=\mu_0\left[i_{\text{through}}+\epsilon_0\frac{d\Phi_E}{dt}\right],&&\langle i_{\text{through}}=0 \rangle\\ &=\epsilon_0\mu_0\frac{d\Phi_{E}}{dt}=\epsilon_0\mu_0\frac{d}{dt}\oint{\vec{E}\cdot{d}\vec{S}}\\&=\underline{\epsilon_0\mu_0\frac{dE}{dt}\Delta{x}\:h};\\\\ \end{align*}

dBdxΔxh=ϵ0μ0dEdtΔxhdBdx=ϵ0μ0dEdt \begin{align*} -\frac{dB}{dx}\Delta{x}\:h&=\epsilon_0\mu_0\frac{dE}{dt}\Delta{x}\:h\\ \therefore-\frac{dB}{dx}&=\epsilon_0\mu_0\frac{dE}{dt} \end{align*}

Use these two equations to come up with something new

{dEdx=dBdtdBdx=ϵ0μ0dEdt \left\{ \begin{align*} \frac{dE}{dx}&=-\frac{dB}{dt}\\\\ -\frac{dB}{dx}&=\epsilon_0\mu_0\frac{dE}{dt} \end{align*} \right.

(ddx)dEdx=(ddx)dBdtd2Edx2=ddt(dBdx),dBdx=ϵ0μ0dEdt=ddt(ϵ0μ0dEdt)=ϵ0μ0d2Edt2 \begin{align*} \left(\frac{d}{dx}\right)\frac{dE}{dx}&=-\left(\frac{d}{dx}\right)\frac{dB}{dt}\\ \frac{d^2E}{dx^2}&=\frac{d}{dt}\left(-\frac{dB}{dx}\right),&&\langle -\frac{dB}{dx}=\epsilon_0\mu_0\frac{dE}{dt} \rangle\\ &=\frac{d}{dt}\left(\epsilon_0\mu_0\frac{dE}{dt}\right)\\ &=\epsilon_0\mu_0\frac{d^2E}{dt^2} \end{align*}

Reminder: wave equation (PHYS032)

d2ydx2=1v2d2ydt2 \begin{align*} \frac{d^2y}{dx^2}&=\frac{1}{v^2}\frac{d^2y}{dt^2}\\ \end{align*}

So we use this relation to make sense of our derived equation

{d2ydx2=(1v2)d2ydt2d2Edx2=(ϵ0μ0)d2Edt2 \left\{ \begin{align*} \frac{d^2y}{dx^2}&=\left(\frac{1}{v^2}\right)\frac{d^2y}{dt^2}\\\\ \frac{d^2E}{dx^2}&=\left(\epsilon_0\mu_0\right)\frac{d^2E}{dt^2} \end{align*} \right.

SPEED OF THE WAVE (LIGHT)

1v2=ϵ0μ0;v=1ϵ0μ0=1(10936π)(4π×107)=3.0×108 \begin{align*} \frac{1}{v^2}&=\epsilon_0\mu_0;\\ v&=\frac{1}{\sqrt{\epsilon_0\mu_0}}=\frac{1}{\sqrt{\left(\frac{10^{-9}}{36\pi}\right)\left(4\pi\times10^{7}\right)}}\\ &=3.0\times10^{8} \end{align*}

CONCLUSION

Light is no different from EM wave (i.e. microwave, radio wave, x-ray, etc.)


LORENTZ TRANSFORMATION

from GALILEAN TRANSFORMATION

Gamma

x=xVt; x'=x-\mathbf{V}t;

Lorentz Transformation says that, in special relativity,

x=γ(xVt) x'=\gamma\left(x-\mathbf{V}t\right)

Einstein's Postulate says if we consider the distance to be

d=rt d=rt

{S:x=ct;S:x=ct; \left\{\begin{align*} S'&:x'=ct';\\ S&: x=ct; \end{align*}\right.

back to our Lorentz Transformation

x=γ(xVt)(ct)=γ((ct)Vt)ct=γ(cV)tLorentz TF formx=γ(x+Vt)(ct)=γ((ct)+Vt)ct=γ(c+V)tInverse Lorentz TF form \begin{matrix} \underset{\text{Lorentz TF form}}{\underline{\begin{align*} x'&=\gamma\left(x-\mathbf{V}t\right)\\ (ct')&=\gamma\left((ct)-\mathbf{V}t\right)\\ ct'&=\gamma\left(c-\mathbf{V}\right)t \end{align*}}}&& \underset{\text{Inverse Lorentz TF form}}{\underline{\begin{align*} x&=\gamma\left(x'+\mathbf{V}t'\right)\\ (ct)&=\gamma\left((ct')+\mathbf{V}t'\right)\\ ct&=\gamma\left(c+\mathbf{V}\right)t' \end{align*}}}\end{matrix}

Use this relation to derive Gamma

1=1;(ctγ(cV)t)=(γ(c+V)tct);cγ(cV)=γ(c+V)cc2=(γ)2(cV)(c+V)=γ2(c2V2);γ2=c2c2V=1c2Vc2=11V2c2;γ=(11V2c2)=11(Vc)2=11(β)2, \begin{align*} 1&=1;\\ \left(\frac{ct'}{\gamma\left(c-\mathbf{V}\right)t}\right)&=\left(\frac{\gamma\left(c+\mathbf{V}\right)t'}{ct}\right);\\ \frac{c}{\gamma\left(c-\mathbf{V}\right)}&=\frac{\gamma\left(c+\mathbf{V}\right)}{c}\\ c^2&=(\gamma)^2(c-\mathbf{V})(c+\mathbf{V})\\ &=\gamma^2\left(c^2-\mathbf{V}^2\right);\\\\ \gamma^2&=\frac{c^2}{c^2-\mathbf{V}}=\frac{1}{\frac{c^2-\mathbf{V}}{c^2}}=\frac{1}{1-\frac{\mathbf{V}^2}{c^2}};\\ \gamma&=\sqrt{\left(\frac{1}{1-\frac{\mathbf{V}^2}{c^2}}\right)}=\frac{1}{\sqrt{1-\left(\frac{\mathbf{V}}{c}\right)^2}}\\ &=\frac{1}{\sqrt{1-\left(\beta\right)^2}}, \end{align*}

where

β=Vc{β0Vcβ1Vc \begin{matrix} \begin{align*} \beta=\frac{\mathbf{V}}{c} \end{align*}& \begin{cases} \beta\to0&\mathbf{V}\ll{c}\\ \beta\to1&\mathbf{V}\approx{c} \end{cases} \end{matrix}

TIME FOR LORENTZ TRANSFORMATION

An observer from frame SS can see the person's time in the other frame SS' is dilated when the frame SS' is moving at a speed close to speed of light. On that note, we need to know how to get the proper time, tt' measured by the observer from SS frame.

tt and tt'

x=γ(x+Vt)=γ((xVt)+Vt)=γ2xγ2Vt+γVt;γVt=xγ2x+γ2Vt;t=x(γV)γ2x(γV)+γ2Vt(γV)=xγVγVx+γt=xV(1γγ)+γt=xV(1γ2γ)+γt=xV(γγ)(1γ2γ)+γt=xγV(1γ2γ2)+γt, \begin{align*} x&=\gamma(x'+\mathbf{V}t')\\ &=\gamma\left(\left(x-\mathbf{V}t\right)+\mathbf{V}t'\right)\\ &=\gamma^2x-\gamma^2\mathbf{V}t+\gamma\mathbf{V}t';\\ \gamma\mathbf{V}t'&=x-\gamma^2x+\gamma^2\mathbf{V}t;\\ t'&=\frac{x}{(\gamma\mathbf{V})}-\frac{\gamma^2x}{(\gamma\mathbf{V})}+\frac{\gamma^2\mathbf{V}t}{(\gamma\mathbf{V})}=\frac{x}{\gamma\mathbf{V}}-\frac{\gamma}{\mathbf{V}}x+\gamma{t}\\ &=\frac{x}{\mathbf{V}}\left(\frac{1}{\gamma}-\gamma\right)+\gamma{t}=\frac{x}{\mathbf{V}}\left(\frac{1-\gamma^2}{\gamma}\right)+\gamma{t}\\ &=\frac{x}{\mathbf{V}}\left(\frac{\gamma}{\gamma}\right)\left(\frac{1-\gamma^2}{\gamma}\right)+\gamma{t}\\ &=\frac{x\gamma}{\mathbf{V}}\left(\frac{1-\gamma^2}{\gamma^2}\right)+\gamma{t},\\ \end{align*}

{1(γ2)γ2=1γ21=(c2V2c2)(c2c2)=V2c2;} \left\{ \begin{align*} \frac{1-\left(\gamma^2\right)}{\gamma^2}&=\frac{1}{\gamma^2}-1\\ &=\left(\frac{c^2-\mathbf{V}^2}{c^2}\right)-\left(\frac{c^2}{c^2}\right)\\ &=-\frac{\mathbf{V}^2}{c^2}; \end{align*}\right\}

t=xγV(V2c2)+γt=γ[tVc2x]; \begin{align*} t'&=\frac{x\gamma}{\mathbf{V}}\left(-\frac{\mathbf{V}^2}{c^2}\right)+\gamma{t}\\ &=\gamma\left[t-\frac{\mathbf{V}}{c^2}x\right]; \end{align*}

t=γ[tVc2x]Lorentz TF formt=γ[t+Vc2x]Inverse Lorentz TF form \begin{matrix} \underset{\text{Lorentz TF form}}{\underline{\begin{align*} t'&=\gamma\left[t-\frac{\mathbf{V}}{c^2}x\right] \end{align*}}}&& \underset{\text{Inverse Lorentz TF form}}{\underline{\begin{align*} t&=\gamma\left[t'+\frac{\mathbf{V}}{c^2}x'\right] \end{align*}}}\end{matrix}